Manipulating the Cellular Circadian Period of Arginine Vasopressin Neurons Alters the Behavioral Circadian Period

نویسندگان

  • Michihiro Mieda
  • Hitoshi Okamoto
  • Takeshi Sakurai
چکیده

As the central pacemaker in mammals, the circadian clock in the suprachiasmatic nucleus (SCN) of the hypothalamus is a heterogeneous structure consisting of multiple types of GABAergic neurons with distinct chemical identities [1, 2]. Although individual cells have a cellular clock driven by autoregulatory transcriptional/translational feedback loops of clock genes, interneuronal communication among SCN clock neurons is likely essential for the SCN to generate a highly robust, coherent circadian rhythm [1]. However, neuronal mechanisms that determine circadian period length remain unclear. The SCN is composed of two subdivisions: a ventral core region containing vasoactive intestinal peptide (VIP)-producing neurons and a dorsal shell region characterized by arginine vasopressin (AVP)-producing neurons. Here we examined whether AVP neurons act as pacemaker cells that regulate the circadian period of behavior rhythm in mice. The deletion of casein kinase 1 delta (CK1δ) specific to AVP neurons, which was expected to lengthen the period of cellular clocks [3-6], lengthened the free-running period of circadian behavior as well. Conversely, the overexpression of CK1δ specific to SCN AVP neurons shortened the free-running period. PER2::LUC imaging in slices confirmed that cellular circadian periods of the SCN shell were lengthened in mice without CK1δ in AVP neurons. Thus, AVP neurons may be an essential component of circadian pacemaker cells in the SCN. Remarkably, the alteration of the shell-core phase relationship in the SCN of these mice did not impair the generation per se of circadian behavior rhythm, thereby underscoring the robustness of the SCN network.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular Clocks in AVP Neurons of the SCN Are Critical for Interneuronal Coupling Regulating Circadian Behavior Rhythm

The suprachiasmatic nucleus (SCN), the primary circadian pacemaker in mammals, is a network structure composed of multiple types of neurons. Here, we report that mice with a Bmal1 deletion specific to arginine vasopressin (AVP)-producing neurons showed marked lengthening in the free-running period and activity time of behavior rhythms. When exposed to an abrupt 8-hr advance of the light/dark cy...

متن کامل

Rhythmic expression of cryptochrome induces the circadian clock of arrhythmic suprachiasmatic nuclei through arginine vasopressin signaling.

Circadian rhythms in mammals are coordinated by the suprachiasmatic nucleus (SCN). SCN neurons define circadian time using transcriptional/posttranslational feedback loops (TTFL) in which expression of Cryptochrome (Cry) and Period (Per) genes is inhibited by their protein products. Loss of Cry1 and Cry2 stops the SCN clock, whereas individual deletions accelerate and decelerate it, respectivel...

متن کامل

Not only vasopressin, but also the intracellular messenger protein kinase Calpha in the suprachiasmatic nucleus correlates with expression of circadian rhythmicity in voles.

The suprachiasmatic nucleus (SCN) is the locus of the main pacemaker for circadian behavioral rhythms. In common voles, variation in circadian behavioral rhythmicity correlates with vasopressin (AVP) immunoreactive cells in the SCN. Here we studied the immunostaining of four AVP linked Ca(2+)-dependent protein kinase C (PKC) isoforms (PKCalpha, PKCbeta1, PKCbeta2, and PKCgamma) at the beginning...

متن کامل

Suprachiasmatic nuclei grafts restore the circadian rhythm in the paraventricular nucleus of the hypothalamus.

The mammalian suprachiasmatic nucleus (SCN) controls the circadian rhythm of many physiological and behavioral events by an orchestrated output of the electrical activity of SCN neurons. We examined the propagation of output signals from the SCN into the hypothalamus, especially into the region of the paraventricular nucleus, through multimicroelectrode recordings using acute and organotypic br...

متن کامل

Dominant-Negative CK2α Induces Potent Effects on Circadian Rhythmicity

Circadian clocks organize the precise timing of cellular and behavioral events. In Drosophila, circadian clocks consist of negative feedback loops in which the clock component PERIOD (PER) represses its own transcription. PER phosphorylation is a critical step in timing the onset and termination of this feedback. The protein kinase CK2 has been linked to circadian timing, but the importance of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2016